1999 I 4A

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/1999 I 4A]])
Jump to: navigation, search

We have the system of equations for p\left(t,x\right) with c being a constant:

\frac{\partial v}{\partial t}=\frac{\partial p}{\partial x}
\frac{\partial p}{\partial t}=c^{2}\frac{\partial v}{\partial x}

And the finite difference scheme:

v_{j}^{n+1}=v_{j}^{n}+\frac{\delta t}{2\delta x}\left[p_{j+1}^{n}-p_{j-1}^{n}\right]
p_{j}^{n+1}=p_{j}^{n}+\frac{c^{2}\delta t}{2\delta x}\left[v_{j+1}^{n}-v_{j-1}^{n}\right]

If we substitute v_{j}^{n}=\sum_{k}r^{n}\tilde{v}_{k}e^{2\pi ikj/N}, p_{j}^{n}=\sum_{k}r^{n}\tilde{p}_{k}e^{2\pi ikj/N}:

\tilde{v}_{k}r=\tilde{v}_{k}+\frac{\delta t}{2\delta x}\left[\tilde{p}_{k}e^{2\pi ik/N}-\tilde{p}_{k}e^{-2\pi ik/N}\right]=\tilde{v}_{k}+\frac{i\delta t}{\delta x}\tilde{p}_{k}\sin\theta_{k}
\tilde{p}_{k}r=\tilde{p}_{k}+\frac{c^{2}\delta t}{2\delta x}\left[\tilde{v}_{k}e^{2\pi ik/N}-\tilde{v}_{k}e^{-2\pi ik/N}\right]=\tilde{p}_{k}+\frac{ic^{2}\delta t}{\delta x}\tilde{v}_{k}\sin\theta_{k}

With θk = 2πk / N. Combining the equations:

\tilde{v}_{k}r=\tilde{v}_{k}+\frac{i\delta t}{\delta x}\left(\frac{ic^{2}\delta t}{\left(r-1\right)\delta x}\tilde{v}_{k}\sin\theta_{k}\right)\sin\theta_{k}

This gives:

0=r^{2}-2r+1+c^{2}\frac{\delta t^{2}}{\delta x^{2}}\sin^{2}\theta_{k}

Solving for r:

r=1\pm i\left|c\frac{\delta t}{\delta x}\sin\theta_{k}\right|

Or:

r^{2}=1+c^{2}\frac{\delta t^{2}}{\delta x^{2}}\sin^{2}\theta_{k}

This means that for finite δt, δx, \left|r\right| is always > 1 for some k, making the method unstable.

If we use the scheme:

v_{j}^{n+1}=v_{j}^{n}+\frac{\delta t}{2\delta x}\left[p_{j+1}^{n+1/2}-p_{j-1}^{n+1/2}\right]
p_{j}^{n+1/2}=p_{j}^{n-1/2}+\frac{c^{2}\delta t}{2\delta x}\left[v_{j+1}^{n}-v_{j-1}^{n}\right]

We get:

\tilde{v}_{k}r=\tilde{v}_{k}+\frac{\delta t}{2\delta x}r^{1/2}\left[\tilde{p}_{k}e^{2\pi ik/N}-\tilde{p}_{k}e^{-2\pi ik/N}\right]=\tilde{v}_{k}+\frac{i\delta t}{\delta x}r^{1/2}\tilde{p}_{k}\sin\theta_{k}
\tilde{p}_{k}r=\tilde{p}_{k}+\frac{c^{2}\delta t}{2\delta x}r^{1/2}\left[\tilde{v}_{k}e^{2\pi ik/N}-\tilde{v}_{k}e^{-2\pi ik/N}\right]=\tilde{p}_{k}+\frac{ic^{2}\delta t}{\delta x}r^{1/2}\tilde{v}_{k}\sin\theta_{k}

And then combining:

\tilde{v}_{k}r=\tilde{v}_{k}+\frac{i\delta t}{\delta x}r\left(\frac{ic^{2}\delta t}{\left(r-1\right)\delta x}\tilde{v}_{k}\sin\theta_{k}\right)\sin\theta_{k}

Or:

0=r^{2}-2r+1+rc^{2}\frac{\delta t^{2}}{\delta x^{2}}\sin^{2}\theta_{k}

Which gives:

r=1-\frac{1}{2}c^{2}\frac{\delta t^{2}}{\delta x^{2}}\sin^{2}\theta_{k}\pm\left|c\frac{\delta t}{\delta x}\sin\theta_{k}\right|\sqrt{c^{2}\frac{\delta t^{2}}{\delta x^{2}}\sin^{2}\theta_{k}-2}

At θk = π / 2:

r=1-\frac{1}{2}c^{2}\frac{\delta t^{2}}{\delta x^{2}}\pm\left|c\frac{\delta t}{\delta x}\right|\sqrt{c^{2}\frac{\delta t^{2}}{\delta x^{2}}-2}

So that, for c^{2}\delta t^{2}\leq2\delta x^{2}:

r^{2}=\left(1-\frac{1}{2}c^{2}\frac{\delta t^{2}}{\delta x^{2}}\right)^{2}+c^{2}\frac{\delta t^{2}}{\delta x^{2}}\left(2-c^{2}\frac{\delta t^{2}}{\delta x^{2}}\right)

So that if:

r^{2}=1+c^{2}\frac{\delta t^{2}}{\delta x^{2}}-\frac{3}{4}\left(c^{2}\frac{\delta t^{2}}{\delta x^{2}}\right)^{2}

Our condition becomes:

\frac{3}{4}\left(c^{2}\frac{\delta t^{2}}{\delta x^{2}}\right)^{2}\geq c^{2}\frac{\delta t^{2}}{\delta x^{2}}

Or:

c^{2}\frac{\delta t^{2}}{\delta x^{2}}\geq\frac{4}{3}

For c^{2}\delta t^{2}\geq2\delta x^{2}:

r=\left(1-\frac{1}{2}c^{2}\frac{\delta t^{2}}{\delta x^{2}}\right)^{2}+\left|c\frac{\delta t}{\delta x}\right|^{2}\left(c^{2}\frac{\delta t^{2}}{\delta x^{2}}-2\right)

Or:

r=1-3c^{2}\frac{\delta t^{2}}{\delta x^{2}}+\frac{5}{4}\left|c\frac{\delta t}{\delta x}\right|^{4}

For stability:

c\delta t\leq\sqrt{\frac{12}{5}}\delta x

Combining the conditions:

\frac{2\delta x}{\sqrt{3}}\leq c\delta t\leq\sqrt{\frac{12}{5}}\delta x

This page was recovered in October 2009 from the Plasmagicians page on Generals_1999_I_4A dated 22:29, 17 April 2007.

Personal tools