2000 II 2

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/2000 II 2]])
Jump to: navigation, search
\psi\left(t\right)=t^{2}\int_{0}^{1}dw\left(\frac{w}{1-w}\right)^{i\lambda}e^{-4i\lambda wt^{2}}

Writing this as:

\psi\left(t\right)=t^{2}\int_{0}^{1}dw\, e^{\phi\left(w,t\right)}

With:

\phi\left(w,t\right)=i\lambda\left[\ln\left(w\right)-\ln\left(1-w\right)-4wt^{2}\right]

Setting the derivative to zero to find saddles:

\phi^{\prime}=0=\frac{1}{w_{s}}+\frac{1}{1-w_{s}}-4t^{2}

Rearranging:

1-w_{s}+w_{s}-4t^{2}w_{s}\left(1-w_{s}\right)=0
w_{s}^{2}-w_{s}+\left(4t^{2}\right)^{-1}=0

Solving for ws:

w_{s}=\frac{1\pm\sqrt{1-4\cdot\left(4t^{2}\right)^{-1}}}{2}=\frac{1}{2}\pm\frac{1}{2}\sqrt{1-t^{-2}}

Which we will now call w_{\pm}. Looking at the second derivative:

\phi^{\prime\prime}\left(w\right)=i\lambda\left[-\frac{1}{w^{2}}+\frac{1}{\left(1-w\right)^{2}}\right]

So that:

\phi^{\prime\prime}(w_{\pm})=-\frac{4i\lambda}{\left(1\pm\sqrt{1-t^{-2}}\right)^{2}}+\frac{4i\lambda}{\left(1\mp\sqrt{1-t^{-2}}\right)^{2}}=
\pm16i\lambda t^{4}\sqrt{1-t^{-2}}

For t\ll1, the saddle points are off the axis. Taylor expanding:

\phi^{\prime\prime}(w_{\pm})=\mp\lambda t^{4}\sqrt{t^{-2}-1}\approx \mp 8\lambda t^{3}

So the direction \sqrt{-\phi^{\prime\prime}\left(w_{+}\right)} is along the real axis and the direction \sqrt{-\phi^{\prime\prime}\left(w_{-}\right)} is purely imaginary and cannot be used. We then get from the saddle at w + :

\psi\left(t\right)=\frac{t^{2}\sqrt{2\pi}}{\sqrt{-\phi^{\prime\prime}\left(w_{+}\right)}}e^{\phi\left(w_{+}\right)}

Expressing t\ll1:

\phi\left(w_{+},t\right)=i\lambda\left[\ln\left(\frac{1+\sqrt{1-t^{-2}}}{1-\sqrt{1-t^{-2}}}\right)-4\left(1+\sqrt{1-t^{-2}}\right)t^{2}\right]\approx i\lambda\left[\ln\left(-1\right)-4it\right]=4\lambda t-\lambda\pi

Putting this in:

\psi\left(t\right)\approx\frac{t^{2}\sqrt{2\pi}}{\sqrt{8\lambda t^{3}}}e^{4\lambda t-\lambda\pi}\sim\sqrt{t}e^{4\lambda t}

For t\gg1, the saddle points are on the real axis. Finding the second derivative:

\phi^{\prime\prime}\left(w_{\pm}\right)=\pm16i\lambda t^{4}\sqrt{1-t^{-2}}\approx\pm16i\lambda t^{4}

So the direction of integration is \sqrt{\mp16i\lambda t^{4}}\sim e^{\mp i\pi/4}.

We integrate through both saddles. Evaluating φ at the first saddle, with t^{2}\gg1:

\phi\left(w_{+},t\right)=i\lambda\left[\ln\left(\frac{1+\sqrt{1-t^{-2}}}{1-\sqrt{1-t^{-2}}}\right)-4\left(1+\sqrt{1-t^{-2}}\right)t^{2}\right]\approx i\lambda\left[\ln\left(\frac{2}{t^{-2}/2}\right)-8t^{2}\right]=2i\lambda\ln\left(2t\right)+8i\lambda t^{2}

So this is just a phase factor. At the other saddle:

\phi\left(w_{-},t\right)=i\lambda\left[\ln\left(\frac{1-\sqrt{1-t^{-2}}}{1+\sqrt{1-t^{-2}}}\right)-4\left(1+\sqrt{1-t^{-2}}\right)t^{2}\right]\approx i\lambda\left[\ln\left(\frac{t^{-2}/2}{2}\right)-8t^{2}\right]=-2i\lambda\ln\left(t/2\right)+8i\lambda t^{2}

So this is another phase factor. Then the saddles contributions are:

\psi\left(t\right)=\frac{t^{2}\sqrt{2\pi}}{\sqrt{-\phi^{\prime\prime}\left(w_{+}\right)}}e^{\phi\left(w_{+}\right)}+\frac{t^{2}\sqrt{2\pi}}{\sqrt{-\phi^{\prime\prime}\left(w_{-}\right)}}e^{\phi\left(w_{-}\right)}

Plugging in:

\psi\left(t\right)=\frac{t^{2}\sqrt{2\pi}}{\sqrt{-16i\lambda t^{4}}}e^{2i\lambda\ln\left(2t\right)+8i\lambda t^{2}}+\frac{t^{2}\sqrt{2\pi}}{\sqrt{16i\lambda t^{4}}}e^{-2i\lambda\ln\left(t/2\right)+8i\lambda t^{2}}

Which simplifies to:

\psi\left(t\right)=-\frac{t^{2}\sqrt{2\pi}}{\sqrt{16\lambda t^{4}}}e^{8i\lambda t^{2}}2i\sin\left(2\lambda\ln\left(2t\right)-\frac{\pi}{4}\right)\sim const

This page was recovered in October 2009 from the Plasmagicians page on Generals_2000_II_2 dated 02:50, 29 April 2007.

Personal tools