2002 I 1

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/2002 I 1]])
Jump to: navigation, search

The magnetic field is:

\mathbf{B}=\nabla\psi\times\hat{z}+B_{z}\hat{z}

The equilibrium momentum equation gives:

\frac{1}{c}\mathbf{J}\times\mathbf{B}=\nabla p

Using:

\mathbf{J}=\frac{c}{4\pi}\nabla\times\mathbf{B}

Plugging in:

\mathbf{J}=\frac{c}{4\pi}\nabla\times\left(\nabla\psi\times\hat{z}+B_{z}\hat{z}\right)

Using vector identities:

\mathbf{J}=\frac{c}{4\pi}\left(-\hat{z}\left(\nabla^{2}\psi\right)+\frac{\partial B_{z}}{\partial\psi}\nabla\psi\times\hat{z}\right)

Plugging this in:

\frac{1}{4\pi}\left(-\hat{z}\left(\nabla^{2}\psi\right)+\frac{\partial B_{z}}{\partial\psi}\nabla\psi\times\hat{z}\right)\times\left(\nabla\psi\times\hat{z}+B_{z}\hat{z}\right)=\nabla p

Or:

\frac{1}{4\pi}\left(-\left(\nabla^{2}\psi\right)\hat{z}\times\left(\nabla\psi\times\hat{z}\right)+\frac{\partial B_{z}}{\partial\psi}\left(\nabla\psi\times\hat{z}\right)\times B_{z}\hat{z}\right)=\nabla p

Expanding:

\frac{1}{4\pi}\left(-\left(\nabla^{2}\psi\right)\nabla\psi-\frac{\partial B_{z}}{\partial\psi}B_{z}\nabla\psi\right)=\nabla p

Since the only vector on the left is \nabla\psi, p is a function only of ψ, and we can write \nabla p=\partial p/\partial\psi\,\nabla\psi, and dot with \nabla\psi:

-\left(\nabla^{2}\psi\right)-\frac{\partial B_{z}}{\partial\psi}B_{z}=4\pi\frac{\partial p}{\partial\psi}

Or:

\nabla^{2}\psi=-\frac{\partial B_{z}}{\partial\psi}B_{z}-4\pi\frac{\partial p}{\partial\psi}

In slab coordinates:

\frac{\partial^{2}\psi}{\partial x^{2}}+\frac{\partial^{2}\psi}{\partial y^{2}}=-\frac{\partial B_{z}}{\partial\psi}B_{z}-4\pi\frac{\partial p}{\partial\psi}

We choose the equilibrium:

\mathbf{B}_{0}\left(x\right)=\nabla\psi_{0}\times\hat{z}+B_{0z}\hat{z}

We are given:

B0y = − b1xb2x3

From the \mathbf{B}_{0} definition:

B_{0y}=-\frac{\partial\psi_{0}}{\partial x}=-b_{1}x-b_{2}x^{3}

So:

\psi_{0}=b_{1}\frac{x^{2}}{2}+b_{2}\frac{x^{4}}{4}

The current is:

\mathbf{j}=\frac{c}{4\pi}\nabla\times\mathbf{B}

So:

j_{0z}=\frac{c}{4\pi}\frac{\partial B_{0y}}{\partial x}=-b_{1}-3b_{2}x^{2}

The equilibrium equation becomes for p = 0:

\nabla^{2}\psi\nabla\psi=-B_{z}\nabla B_{z}

If we take the curl (to get rid of the unknown Bz term):

\nabla\times\left(\nabla^{2}\psi\nabla\psi\right)=-\nabla\times\left(B_{z}\nabla B_{z}\right)

Writing this out:

\nabla^{2}\psi\nabla\times\nabla\psi+\nabla\left(\nabla^{2}\psi\right)\times\nabla\psi=-B_{z}\nabla\times\nabla B_{z}-\nabla B_{z}\times\nabla B_{z}

\nabla\times\nabla f=0 for any scalar function:

\nabla\left(\nabla^{2}\psi\right)\times\nabla\psi=0

This gives the first order equation:

\nabla\left(\nabla^{2}\psi_{0}\right)\times\nabla\left[\psi_{1}\cos ky\right]+\nabla\left[\nabla^{2}\left(\psi_{1}\cos ky\right)\right]\times\nabla\psi_{0}=0

Since ψ1 and ψ0 are only functions of x:

\left(\psi_{0}^{\prime\prime\prime}\hat{x}\right)\times\left(\hat{x}\psi_{1}^{\prime}\cos ky-\hat{y}k\psi_{1}\sin ky\right)+\nabla\left[\psi_{1}^{\prime\prime}\cos ky-k^{2}\psi_{1}\cos ky\right]\times\left(\hat{x}\psi_{0}^{\prime}\right)=0

Dotting with \hat{z} (the only nonzero component):

-\psi_{0}^{\prime\prime\prime}k\psi_{1}\sin ky+k\left(\psi_{1}^{\prime\prime}\sin ky-k^{2}\psi_{1}\sin ky\right)\psi_{0}^{\prime}=0

Or:

\left(\psi_{1}^{\prime\prime}-k^{2}\psi_{1}\right)\psi_{0}^{\prime}=\psi_{0}^{\prime\prime\prime}\psi_{1}

Using \psi_{0}=b_{1}\frac{x^{2}}{2}+b_{2}\frac{x^{4}}{4}:

\left(\psi_{1}^{\prime\prime}-k^{2}\psi_{1}\right)\left(b_{1}+b_{2}x^{2}\right)=6b_{2}\psi_{1}

We write:

\hat{n}\cdot\mathbf{B}=0

at the boundary:

x=a\left(1+\epsilon\cos\left(ky\right)\right)

So:

\frac{dx}{dy}=-a\epsilon k\sin\left(ky\right)

And:

\hat{n}\propto\hat{x}+\hat{y}a\epsilon k\sin\left(ky\right)

At the other boundary:

\hat{n}\propto-\hat{x}+\hat{y}a\epsilon k\sin\left(ky\right)

So:

\mathbf{B}=\nabla\psi\times\hat{z}+B_{z}\hat{z}

The boundary condition:

\mathbf{B}\cdot\hat{n}=0

At the upper boundary:

B_{x}+B_{y}a\epsilon k\sin\left(ky\right)=0

Putting in the definition for the B:

\frac{\partial\psi}{\partial y}+\frac{\partial\psi}{\partial x}a\epsilon k\sin\left(ky\right)=0

Using \psi=\psi_{0}\left(x\right)-\psi_{1}\left(x\right)\cos\left(ky\right):

\psi_{1}k\sin\left(ky\right)+\frac{\partial\psi_{0}}{\partial x}a\epsilon k\sin\left(ky\right)=0

Simplifying:

\psi_{1}=-\frac{\partial\psi_{0}}{\partial x}a\epsilon

At the lower boundary, we get by analogy:

\psi_{1}=\frac{\partial\psi_{0}}{\partial x}a\epsilon

So:

\psi_{1}\left(x=\pm a\right)=\mp\left.a\epsilon\frac{\partial\psi_{0}}{\partial x}\right|_{x=\pm a}

For the equation:

\left(\psi_{1}^{\prime\prime}-k^{2}\psi_{1}\right)\left(b_{1}+b_{2}x^{2}\right)=6b_{2}\psi_{1}

Near x = 0:

\left(\psi_{1}^{\prime\prime}-k^{2}\psi_{1}\right)b_{1}\approx6b_{2}\psi_{1}

Which can be written as:

\psi_{1}^{\prime\prime}=\left(k^{2}+\frac{6b_{2}}{b_{1}}\right)\psi_{1}

We get:

\psi_{1}=ce^{-\left|x\right|\sqrt{k^{2}+6b_{2}/b_{1}}}

The jump condition across the boundary will be:

\Delta^{\prime}=\frac{\psi_{1}^{\prime}\left(0_{+}\right)-\psi_{1}^{\prime}\left(0_{-}\right)}{\psi_{1}\left(0\right)}=\frac{-c\sqrt{k^{2}+\frac{6b_{2}}{b_{1}}}-c\sqrt{k^{2}+\frac{6b_{2}}{b_{1}}}}{c}=-2\sqrt{k^{2}+\frac{6b_{2}}{b_{1}}}

If b2 = 0:

\psi_{0}=b_{1}\frac{x^{2}}{2}

Using the boundary conditions gives:

\psi_{1}\left(x=\pm a\right)=\mp\left.a\epsilon\frac{\partial\psi_{0}}{\partial x}\right|_{x=\pm a}=-b_{1}a^{2}\epsilon

Which gives the exterior solution:

\psi_{1}=-b_{1}a^{2}\epsilon e^{ka-k\left|x\right|}

So that the total flux function is:

\psi=b_{1}\left(x^{2}-a^{2}\epsilon e^{ka-k\left|x\right|}\cos\left(ky\right)\right)

Near x = 0:

\psi\approx b_{1}\left(x^{2}-a^{2}e^{ka}\epsilon\cos\left(ky\right)\right)

O- and X-points then occur where \partial\psi/\partial y=0:

\frac{\partial\psi}{\partial y}=a^{2}e^{ka}k\epsilon\sin\left(ky\right)

So points occur at ky = nπ, x = 0. O-points are minima, and X-points are maxima:

\frac{\partial^{2}\psi}{\partial y^{2}}=a^{2}e^{ka}k^{2}\epsilon\cos\left(ky\right)

Failed to parse (syntax error): \partial^{2}\psi/\partial y^{2}&gt;0

at ky = 2πn, so these are

O-points. ky=2\pi\left(n-\frac{1}{2}\right), so these points are X-points.

This page was recovered in October 2009 from the Plasmagicians page on Generals_2002_I_1 dated 19:55, 27 April 2007.

Personal tools