2003 II 1A
From QED
The algorithm is:
![U_{j}^{\star}=U_{j}^{n}-\frac{\delta t}{\delta x}\left[F_{j}^{n}-F_{j-1}^{n}\right]](../../../images/math/c/4/7/c470f172b1d5eac0d8e02bfbdbc4eef9.png)
![U_{j}^{n+1}=\frac{1}{2}\left\{ U_{j}^{n}+U_{j}^{\star}-\frac{\delta t}{\delta x}\left[F_{j}^{\star}-F_{j-1}^{\star}\right]-\frac{\delta t}{\delta x}\left[F_{j}^{n}-2F_{j-1}^{n}+F_{j-2}^{n}\right]\right\}](../../../images/math/e/f/c/efc77856305f23109ab267002f45b0f0.png)
The linearized form of equation 1 is:

Plugging in :
![U_{j}^{\star}=U_{j}^{n}-\frac{\delta t}{\delta x}A\left[U_{j}^{n}-U_{j-1}^{n}\right]](../../../images/math/1/7/2/172b6b5d877908944665ef5714ed58e2.png)
![U_{j}^{n+1}=\frac{1}{2}\left\{ U_{j}^{n}+U_{j}^{\star}-\frac{\delta t}{\delta x}A\left[U_{j}^{\star}-U_{j-1}^{\star}\right]-\frac{\delta t}{\delta x}A\left[U_{j}^{n}-2U_{j-1}^{n}+U_{j-2}^{n}\right]\right\}](../../../images/math/a/3/0/a30cd138df17bf7cb48e0e6678d6141c.png)
Taylor expanding around :



![U_{j}^{\star}=U_{j}^{n}-\frac{\delta t}{\delta x}A\left[\delta x\frac{\partial U_{j}^{n}}{\partial x}-\frac{1}{2}\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta x^{3}\right)\right]](../../../images/math/d/3/5/d35ddfcf94eac53b50f0f05d826c3edc.png)
We also find:
![U_{j-1}^{\star}=U_{j-1}^{n}-\frac{\delta t}{\delta x}A\left[U_{j-1}^{n}-U_{j-2}^{n}\right]](../../../images/math/d/2/e/d2eded63182bed3b91d893c6d6c9134d.png)
Which gives:
![U_{j-1}^{\star}=U_{j}^{n}-\delta x\frac{\partial U_{j}^{n}}{\partial x}+\frac{1}{2}\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta x^{3}\right)-\frac{\delta t}{\delta x}A\left[\delta x\frac{\partial U_{j}^{n}}{\partial x}-\frac{3}{2}\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta x^{3}\right)\right]](../../../images/math/c/b/8/cb8af34a8ef8932425a22a2f1dcdc769.png)
Plugging into terms in the second step:
![U_{j}^{n}+U_{j}^{\star}=2U_{j}^{n}-\frac{\delta t}{\delta x}A\left[\delta x\frac{\partial U_{j}^{n}}{\partial x}-\frac{1}{2}\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta x^{3}\right)\right]](../../../images/math/8/e/4/8e4423ca89dc31d2de2bd5b75c5fa751.png)
![U_{j}^{\star}-U_{j-1}^{\star}=\delta x\frac{\partial U_{j}^{n}}{\partial x}-\frac{1}{2}\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}-\frac{\delta t}{\delta x}A\left[\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta x^{3}\right)\right]](../../../images/math/4/0/0/40007d84bd237a381cdb57d407f8e945.png)

Then writing :

Step 2 then becomes:
![\begin{array}{rcl} -2A\delta t\frac{\partial U_{j}^{n}}{\partial x}+A^{2}\left(\delta t\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta t^{3}\right) & = & -\frac{\delta t}{\delta x}A\left[\delta x\frac{\partial U_{j}^{n}}{\partial x}-\frac{1}{2}\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta x^{3}\right)\right]\\ & & -\frac{\delta t}{\delta x}A\left[\delta x\frac{\partial U_{j}^{n}}{\partial x}-\frac{1}{2}\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}-\frac{\delta t}{\delta x}A\left[\frac{3}{2}\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta x^{3}\right)\right]\right]\\ & & -\frac{\delta t}{\delta x}A\left[\left(\delta x\right)^{2}\frac{\partial^{2}U_{j}^{n}}{\partial x^{2}}+\mathcal{O}\left(\delta x^{3}\right)\right]\end{array}](../../../images/math/9/9/c/99c1b6ee6c0e6998c958f66262e93eec.png)
Most terms cancel on the right, giving:

Becoming:

Going back to the first step:
![U_{j}^{\star}=U_{j}^{n}-\frac{\delta t}{\delta x}A\left[U_{j}^{n}-U_{j-1}^{n}\right]](../../../images/math/1/7/2/172b6b5d877908944665ef5714ed58e2.png)
Setting θk = kjδx / L:

We get:
![U_{j}^{\star}=\tilde{U}-\frac{\delta t}{\delta x}A\tilde{U}\left[1-e^{-i\theta_{k}}\right]](../../../images/math/8/c/a/8ca534fd98aab706a9a7813cd11565dd.png)

So:
![r=\frac{1}{2}\left\{ 1+1-\frac{\delta t}{\delta x}A\left[1-e^{-i\theta_{k}}\right]-\frac{\delta t}{\delta x}A\left[1-e^{-i\theta_{k}}-\frac{\delta t}{\delta x}A\left[1-e^{-i\theta_{k}}\right]^{2}\right]-\frac{\delta t}{\delta x}A\left[1-2e^{-i\theta_{k}}+e^{-2i\theta_{k}}\right]\right\}](../../../images/math/4/e/3/4e3d3839b46f36be33e086beaa6ecc40.png)
Multiplying through by :
![2re^{i\theta_{k}}=2e^{i\theta_{k}}-\frac{\delta t}{\delta x}A\left[e^{i\theta_{k}}-1\right]-\frac{\delta t}{\delta x}A\left[e^{i\theta_{k}}-1-\frac{\delta t}{\delta x}A\left[e^{i\theta_{k}/2}-e^{-i\theta_{k}/2}\right]^{2}\right]-\frac{\delta t}{\delta x}A\left[e^{i\theta_{k}}-2+e^{-i\theta_{k}}\right]](../../../images/math/1/c/5/1c5fe5553493b782967a772d0d0cca09.png)
Using sin and cos:
![2re^{i\theta_{k}}=2e^{i\theta_{k}}-2\frac{\delta t}{\delta x}A\left[e^{i\theta_{k}}-1\right]-4\left(\frac{\delta t}{\delta x}A\right)^{2}\sin^{2}\left(\theta_{k}/2\right)-2\frac{\delta t}{\delta x}A\left[\cos\theta_{k}-1\right]](../../../images/math/8/7/a/87a6d388f7c6da4a59790d102b1d1443.png)
Now solving for r:
![r=1-\frac{\delta t}{\delta x}A\left[1-e^{-i\theta_{k}}\right]-2e^{-i\theta_{k}}\left(\frac{\delta t}{\delta x}A\right)^{2}\sin^{2}\left(\theta_{k}/2\right)-e^{-i\theta_{k}}\frac{\delta t}{\delta x}A\left[\cos\theta_{k}-1\right]](../../../images/math/4/4/3/4431c8ebe7de6c60e2fd15ef96a83609.png)
This means:

![\left|r\left(\theta_{k}=\frac{\pi}{2}\right)\right|^{2}=\left\{ 1-\frac{\delta t}{\delta x}A\right\} ^{2}+\left\{ -\frac{\delta t}{\delta x}A+2\left(\frac{\delta t}{\delta x}A\right)^{2}\frac{1}{2}-\frac{\delta t}{\delta x}A\right\} ^{2}=\left[1-\frac{\delta t}{\delta x}A\right]^{2}+\left(\frac{\delta t}{\delta x}A\right)^{2}\left[\left(\frac{\delta t}{\delta x}A\right)-2\right]^{2}](../../../images/math/4/0/2/4027502bdf7c6402a04f569e49c2ec0e.png)
Whatever. Plotting graphically we just get the Courant condition:

Then at θk = π:

Again giving the Courant condition.
The advantage of this method is that it is accurate to .
A disadvantage is that because
only depends
on the values of U for x < x0, nothing can propagate backwards.
This would be a problem if A < 0.
This page was recovered in October 2009 from the Plasmagicians page on Generals_2003_II_1A dated 01:02, 7 May 2007.