2003 I 3

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/2003 I 3]])
Jump to: navigation, search

We have:

\mathbf{B}=\nabla\psi\times\nabla\phi+F\nabla\phi

The equilibrium equation is:

\frac{1}{c}\mathbf{J}\times\mathbf{B}=\nabla p

The first term is:

\mathbf{J}=\frac{4\pi}{c}\left(\nabla\times\mathbf{B}\right)=\frac{4\pi}{c}\nabla\times\left(\nabla\psi\times\nabla\phi+F\nabla\phi\right)

Simplifying:

\mathbf{J}=\frac{4\pi}{c}\left(-\nabla^{2}\psi\nabla\phi+\nabla F\times\nabla\phi\right)

Then:

\mathbf{B}\cdot\nabla p=0

Plugging in:

\left(\nabla\psi\times\nabla\phi+F\nabla\phi\right)\cdot\nabla p=0

Since the system is axisymmetric:

\left(\nabla\psi\times\nabla\phi\right)\cdot\nabla p=\nabla\phi\cdot\left(\nabla\psi\times\nabla p\right)=0

So that p is only a function of ψ. Then:

\mathbf{J}\cdot\nabla p=0

Giving:

\left(-\nabla^{2}\psi\nabla\phi+\nabla F\times\nabla\phi\right)\cdot\nabla\psi=0

Since \nabla\phi\cdot\nabla\psi=0:

\nabla F\times\nabla\phi\cdot\nabla\psi=\nabla\phi\cdot\left(\nabla F\times\nabla\psi\right)=0

So that F is a function of ψ.

If we taylor expand ψ:

\psi=\frac{\partial\psi_{0}}{\partial R}\left(R-a\right)+\frac{\partial\psi_{0}}{\partial z}z+\frac{\partial^{2}\psi_{0}}{\partial R^{2}}\frac{\left(R-a\right)^{2}}{2}+2\frac{\partial^{2}\psi_{0}}{\partial z\partial R}z\left(R-a\right)+\frac{\partial^{2}\psi_{0}}{\partial z^{2}}z^{2}

The first order terms are just the magnetic field on axis (B_{z}=\partial\psi/\partial R, B_{R}=-\partial\psi/\partial z). If the flux surfaces are up-down symmetric, then the terms odd in z must be zero. This gives:

\psi=\frac{\partial\psi_{0}}{\partial R}\left(R-a\right)+\frac{\partial^{2}\psi_{0}}{\partial R^{2}}\frac{\left(R-a\right)^{2}}{2}+\frac{\partial^{2}\psi_{0}}{\partial z^{2}}z^{2}

So that the flux surfaces will be circular around the axis if \partial^{2}\psi_{0}/\partial R^{2}=\partial^{2}\psi_{0}/\partial z^{2}.

The curvature of the field lines is just:

\kappa=\left(\hat{b}\cdot\nabla\right)\hat{b}=\left(-\frac{B_{\theta}^{2}}{r}\right)\hat{r}

This term describes the interaction of the pressure gradient and field line curvature. In cylindrical geometry, it will be:

-\int_{V}\left(\xi_{\perp r}\frac{\partial p}{\partial r}\right)\left(\xi_{\perp r}^{\star}\left(-\frac{B_{\theta}^{2}}{r}\right)\right)=\int_{V}\xi_{\perp r}^{2}\frac{\partial p}{\partial r}\frac{B_{\theta}^{2}}{r}

This term will contribute to instability if \partial p/\partial r is negative, since δW will be negative.

This page was recovered in October 2009 from the Plasmagicians page on Generals_2003_I_3 dated 00:53, 7 May 2007.

Personal tools