2004 II 4

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/2004 II 4]])
Jump to: navigation, search

This is a well-behaved function around x = 0, so we write y\left(x\right)=\sum_{n}a_{n}x^{n}:

\sum_{n}a_{n}n\left(n-1\right)x^{n-2}+\sum_{n}a_{n}nx^{n}+\sum_{n}a_{n}x^{n}=0

Shifting the first by two:

\sum_{n}\left[a_{n+2}\left(n+2\right)\left(n+1\right)+\left(n+1\right)a_{n}\right]x^{n}=0

Then we get the recurrence relation:

a_{n+2}=\frac{a_{n}}{\left(n+2\right)}

We get solutions for a0 = 0 and a1 = 0:

y_{1}\left(x\right)=\sum_{n}\frac{a_{0}x^{2n}}{2^{n}n!};\qquad y_{2}\left(x\right)=\sum_{n}\frac{a_{1}\Gamma(\frac{1}{2})x^{2n+1}}{2^{n}\Gamma(n+\frac{1}{2})}

The equation is:

\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx}+y=0

Using y˜eS:

\left(S^{\prime\prime}+\left(S^{\prime}\right)^{2}\right)+xS^{\prime}+1=0

Balance between \left(S^{\prime}\right)^{2}, S=-\frac{1}{2}x^{2}. There is an alternate balance between 1 and S^{\prime}=-1/x, or S = − logx. So the two asymptotic values are:

y\rightarrow e^{-x^{2}/2},\quad \frac{1}{x}

We use the integral:

y\left(x\right)=\int e^{ixt}f\left(t\right)dt

Plugging in:

\int\left[-t^{2}+xit+1\right]f\left(t\right)e^{ixt}dt=0

Integrating by parts:

\left.tf\left(t\right)e^{ixt}\right|_{C}-\int\left[t^{2}f\left(t\right)+tf^{\prime}\left(t\right)\right]e^{ixt}dt=0

Solving this differential equation:

-t=\frac{f^{\prime}}{f}

Integrating:

-\frac{t^{2}}{2}=\ln f

Or:

f=e^{-t^{2}/2}

Then the boundary becomes:

\left.te^{-t^{2}/2}e^{ixt}\right|_{C}=0

This goes to zero as t\rightarrow0. So the Fourier-Laplace solutions are:

y_{A}\left(x\right)=\int_{-\infty}^{0}e^{ixt}e^{-t^{2}/2}dt;\quad y_{B}\left(x\right)=\int_{0}^{\infty}e^{ixt}e^{-t^{2}/2}dt

We can replace t with t in fA to get:

y_{A}\left(x\right)=-\int_{\infty}^{0}e^{-ixt}e^{-t^{2}/2}dt=\int_{0}^{\infty}e^{-ixt}e^{-t^{2}/2}dt

Then we can form:

y_{1}^{\prime}\left(x\right)=\frac{1}{2}\left(y_{B}\left(x\right)+y_{A}\left(x\right)\right)=\int_{0}^{\infty}\cos\left(xt\right)e^{-t^{2}/2}dt
y_{2}^{\prime}\left(x\right)=\frac{1}{2i}\left(y_{B}\left(x\right)-y_{A}\left(x\right)\right)=\int_{0}^{\infty}\sin\left(xt\right)e^{-t^{2}/2}dt

y_{2}^{\prime} is even and corresponds to y2.

Ask seth.

This page was recovered in October 2009 from the Plasmagicians page on Generals_2004_II_4 dated 22:29, 9 May 2007.

Personal tools