2004 I 3

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/2004 I 3]])
Jump to: navigation, search

The collision operator is:

C\left(f_{e}\right)=\nu_{ei}\left(\frac{v_{Te}}{v}\right)^{3}\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f_{e}}{\partial\theta}\right)

The steady state Vlasov equation is:

-\frac{e}{m}\mathbf{E}\cdot\frac{\partial f_{e}}{\partial\mathbf{v}}=C\left(f_{e}\right)

If we linearize this:

-\frac{e}{m}\mathbf{E}\cdot\frac{\partial f_{0e}}{\partial\mathbf{v}}=C\left(f_{1e}\right)

Using f0e = fM, this becomes:

-\frac{e}{m}E_{\|}\cos\theta\frac{-2v}{v_{Te}^{2}}f_{M}=\nu_{ei}\left(\frac{v_{Te}}{v}\right)^{3}\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f_{1e}}{\partial\theta}\right)

If we guess f_{1e}=g\left(v\right)\cos\theta:

-\frac{e}{m}E_{\|}\cos\theta\frac{-2v}{v_{Te}^{2}}f_{M}=\nu_{ei}\left(\frac{v_{Te}}{v}\right)^{3}2g\left(v\right)\cos\theta

So that:

g\left(v\right)=\frac{eE_{\|}}{m\nu_{ei}v_{Te}}\left(\frac{v}{v_{Te}}\right)^{4}f_{M}

Then:

j_{\|}=e\int v_{\|}f_{1}d\mathbf{v}=2\pi\int v^{2}\sin\theta dvd\theta\, v\cos\theta\, f_{1}

Plugging in (and using p = cosθ)

j_{\|}=2\pi e\int_{-1}^{1}p^{2}dp\int v^{3}dv\frac{eE_{\|}}{m\nu_{ei}v_{Te}}\left(\frac{v}{v_{Te}}\right)^{4}f_{M}

Plugging in the maxwellian and doing the first integral:

j_{\|}=\frac{4\pi e}{3}\int v^{3}dv\frac{eE_{\|}}{m\nu_{ei}v_{Te}}\left(\frac{v}{v_{Te}}\right)^{4}\frac{2n_{0}}{\pi^{3/2}v_{Te}^{3}}e^{-v^{2}/v_{t}^{2}}

Transforming to x = v / vTe:

j_{\|}=\frac{4\pi e}{3}\frac{2eE_{\|}n_{0}}{m\nu_{ei}\pi^{3/2}}\int dx\, x^{7}e^{-x^{2}}= \frac{2\omega_{pe}^{2}}{\nu_{ei}\pi^{3/2}}E_{\|}=\sigma_{\|}E_{\|}

Then the resistivity is:

\eta=\frac{E_{\|}}{j_{\|}}=\frac{\nu_{ei}\pi^{3/2}}{2\omega_{pe}^{2}}

The parallel resistivity is changed in the banana regime by conductivity reduction, which occurs because trapped particles cannot carry current. The new resistivity will thus be:

\eta_{Neo}=\frac{1}{\sigma_{\|}\left(1-\sqrt{\epsilon}\right)}=\frac{\nu_{ei}\pi^{3/2}}{2\omega_{pe}^{2}\left(1-\epsilon^{1/2}\right)}

Where ε = r / R0, and ε1 / 2 is the fraction of trapped particles. The regime is valid as long as the collision frequency is less than the bounce frequency. The bounce frequency is given by:

\omega_{b}\sim\frac{v_{T}\epsilon^{1/2}}{qR}

The collision frequency is also increased by 1 / ε for the trapped particles, so:

\nu_{i}^{\star}=\frac{\nu_{ei}/\epsilon}{\omega_{b}}=\frac{\nu_{ei}qR}{v_{T}\epsilon^{3/2}}<1

This page was recovered in October 2009 from the Plasmagicians page on Generals_2004_I_3 dated 22:21, 9 May 2007.

Personal tools