2005 II 1

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/2005 II 1]])
Jump to: navigation, search

The energy density in the plasma is:

w_{p}=\frac{1}{2}\rho v^{2}+\frac{B^{2}}{8\pi}

So the total energy in the plasma is:

E_{p}=\int_{V}d\mathbf{x}\left(\frac{1}{2}\rho v^{2}+\frac{B^{2}}{8\pi}\right)

The ideal MHD equations with p = 0 give:

\frac{\partial\rho}{\partial t}+\nabla\cdot\left(\rho\mathbf{v}\right)=0
\rho\frac{d\mathbf{v}}{dt}=\frac{1}{c}\mathbf{J}\times\mathbf{B}
\nabla\times\mathbf{E}=-\frac{1}{c}\frac{\partial\mathbf{B}}{\partial t}
\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}=0
\mathbf{J}=\frac{c}{4\pi}\nabla\times\mathbf{B}

Combining:

\frac{\partial\rho}{\partial t}+\nabla\cdot\left(\rho\mathbf{v}\right)=0
\rho\frac{\partial\mathbf{v}}{\partial t}+\rho\mathbf{v}\cdot\nabla\mathbf{v}=\frac{1}{4\pi}\left(\nabla\times\mathbf{B}\right)\times\mathbf{B}
\frac{\partial\mathbf{B}}{\partial t}=\nabla\times\left(\mathbf{v}\times\mathbf{B}\right)

So:

\frac{dE_{p}}{dt}=\int_{V}d\mathbf{x}\left(\frac{1}{2}\frac{\partial\rho}{\partial t}v^{2}+\rho\mathbf{v}\cdot\frac{\partial\mathbf{v}}{\partial t}+\frac{\mathbf{B}}{4\pi}\cdot\frac{\partial\mathbf{B}}{\partial t}\right)+\int_{S}d\mathbf{x}_{\partial}w_{F}\hat{n}\cdot\mathbf{v}

Plugging in:

\begin{array}{rcl} \frac{dE_{p}}{dt} &amp; = &amp; \int_{V}d\mathbf{x}\left(-\frac{1}{2}v^{2}\nabla\cdot\left(\rho\mathbf{v}\right)+\mathbf{v}\cdot\left(\frac{1}{4\pi}\left(\nabla\times\mathbf{B}\right)\times\mathbf{B}-\rho\mathbf{v}\cdot\nabla\mathbf{v}\right)\right)\\  &amp;  &amp; \int_{V}d\mathbf{x}\frac{\mathbf{B}}{4\pi}\cdot\nabla\times\left(\mathbf{v}\times\mathbf{B}\right)+\int_{S}d\mathbf{x}_{\partial}\left(\right)\hat{n}\cdot\mathbf{v}\end{array}

Rearranging:

\begin{array}{rcl} \frac{dE_{p}}{dt} &amp; = &amp; \frac{1}{2}\int_{V}d\mathbf{x}\left(-v^{2}\nabla\cdot\left(\rho\mathbf{v}\right)-\rho\left(\mathbf{v}\cdot\nabla\right)v^{2}\right)\\  &amp;  &amp; +\frac{1}{4\pi}\int_{V}d\mathbf{x}\left[-\left(\nabla\times\mathbf{B}\right)\cdot\left(\mathbf{v}\times\mathbf{B}\right)+\mathbf{B}\cdot\nabla\times\left(\mathbf{v}\times\mathbf{B}\right)\right]\\  &amp;  &amp; +\int_{S}d\mathbf{x}_{\partial}\left(\frac{1}{2}\rho v^{2}+\frac{B^{2}}{8\pi}\right)\hat{n}\cdot\mathbf{v}\end{array}

Or, using vector identities 1, 7 and 9:

\begin{array}{rcl} \frac{dE_{p}}{dt} &amp; = &amp; -\frac{1}{2}\int_{V}d\mathbf{x}\nabla\cdot\left(v^{2}\rho\mathbf{v}\right)\\  &amp;  &amp; +\frac{1}{4\pi}\int_{V}d\mathbf{x}\nabla\cdot\left[\left(\mathbf{v}\times\mathbf{B}\right)\times\mathbf{B}\right]\\  &amp;  &amp; +\int_{S}d\mathbf{x}_{\partial}\left(\frac{1}{2}\rho v^{2}+\frac{B^{2}}{8\pi}\right)\hat{n}\cdot\mathbf{v}\end{array}

Then:

\begin{array}{rcl} \frac{dE_{p}}{dt} &amp; = &amp; -\frac{1}{2}\int_{S}d\mathbf{x}_{\partial}v^{2}\rho\mathbf{v}\cdot\hat{n}\\  &amp;  &amp; +\frac{1}{4\pi}\int_{S}d\mathbf{x}_{\partial}\left[\left(\mathbf{v}\times\mathbf{B}\right)\times\mathbf{B}\right]\cdot\hat{n}\\  &amp;  &amp; +\int_{S}d\mathbf{x}_{\partial}\left(\frac{1}{2}\rho v^{2}+\frac{B^{2}}{8\pi}\right)\hat{n}\cdot\mathbf{v}\end{array}

Or:

\frac{dE_{p}}{dt}=\int_{S}d\mathbf{x}_{\partial}\left(\frac{1}{4\pi}\left(\mathbf{v}\times\mathbf{B}\right)\times\mathbf{B}+\frac{B^{2}}{8\pi}\mathbf{v}\right)\cdot\hat{n}

Expanding the double cross product:

\frac{dE_{p}}{dt}=\int_{S}d\mathbf{x}_{\partial}\left(\frac{1}{4\pi}\left(\mathbf{B}\cdot\mathbf{v}\right)\mathbf{B}-\frac{B^{2}}{8\pi}\mathbf{v}\right)\cdot\hat{n}

\mathbf{B}\cdot\hat{n}=0 on the boundary:

\frac{dE_{p}}{dt}=-\frac{1}{8\pi}\int_{S}d\mathbf{x}_{\partial}B^{2}\mathbf{v}\cdot\hat{n}

The vacuum energy density is:

w_{v}=\frac{B^{2}}{8\pi}

So:

\frac{dE_{v}}{dt}=\frac{1}{4\pi}\int_{V}\mathbf{B}\cdot\frac{\partial\mathbf{B}}{\partial t}d\mathbf{x}+\frac{1}{8\pi}\int_{S}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

Plugging in for \partial B/\partial t:

\frac{dE_{v}}{dt}=-\frac{c}{4\pi}\int_{V}\mathbf{B}\cdot\left(\nabla\times\mathbf{E}\right)d\mathbf{x}+\frac{1}{8\pi}\int_{S}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

Using the vector identity:

\frac{dE_{v}}{dt}=-\frac{c}{4\pi}\int_{V}\left[\nabla\times\left(\mathbf{E}\times\mathbf{B}\right)+\mathbf{E}\cdot\left(\nabla\times\mathbf{B}\right)\right]d\mathbf{x}+\frac{1}{8\pi}\int_{S}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

Since \nabla\times\mathbf{B}=\mathbf{j}=0 in the vacuum, and plugging in \mathbf{E}=-\mathbf{v}\times\mathbf{B}/c:

\frac{dE_{v}}{dt}=\frac{1}{4\pi}\int_{V}\nabla\cdot\left(\left(\mathbf{v}\times\mathbf{B}\right)\times\mathbf{B}\right)d\mathbf{x}+\frac{1}{8\pi}\int_{S}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

Expanding the double cross product, and changing the integral to a surface integral:

\frac{dE_{v}}{dt}=\frac{1}{4\pi}\int_{S}\hat{n}\cdot\left(B^{2}\mathbf{v}-\left(\mathbf{B}\cdot\mathbf{v}\right)\mathbf{B}\right)d\mathbf{x}_{\partial}+\frac{1}{8\pi}\int_{S}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

Since \mathbf{B}\cdot\hat{n} is zero on the surface:

\frac{dE_{v}}{dt}=-\frac{1}{8\pi}\int_{S}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

There will be no jump conditions at the plasma-vacuum interface, since there are no surface currents. The time derivative of the total energy will then be:

\frac{dE}{dt}=\frac{dE_{p}}{dt}+\frac{dE_{v}}{dt}=-\frac{1}{8\pi}\int_{S_{p}}d\mathbf{x}_{\partial}B^{2}\mathbf{v}\cdot\hat{n}-\frac{1}{8\pi}\int_{S_{v}}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

The vacuum boundary contains the plasma-vacuum boundary and the vacuum-container boundary:

\frac{dE}{dt}=-\frac{1}{8\pi}\int_{S_{p}}d\mathbf{x}_{\partial}B^{2}\mathbf{v}\cdot\hat{n}-\frac{1}{8\pi}\int_{S_{p}}B^{2}\mathbf{v}\cdot\left(-\hat{n}\right)d\mathbf{x}_{\partial}-\frac{1}{8\pi}\int_{S_{w}}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

Where we have used the negative sign since the normal faces out of the vacuum, and so into the plasma. The total energy time derivative is then:

\frac{dE}{dt}=-\frac{1}{8\pi}\int_{S_{w}}B^{2}\mathbf{v}\cdot\hat{n}d\mathbf{x}_{\partial}

That is, the integral at the conducting wall of this quantity.

In MHD the E2 / 8π is considered small compared to the B2 / 8π term. Using Ohm's law:

\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}=0

So:

E\approx-\frac{v}{c}B

Then the electric field term over the magnetic field term gives:

\frac{E^{2}/8\pi}{B^{2}/8\pi}=\left(\frac{v}{c}\right)^{2}

So since E^{2}\ll B^{2}.

This page was recovered in October 2009 from the Plasmagicians page on Generals_2005_II_1 dated 20:25, 15 May 2007.

Personal tools