2005 II 4

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/2005 II 4]])
Jump to: navigation, search

The wave equation is:

\mathbf{n}\times\left(\mathbf{n}\times\mathbf{E}\right)+\epsilon\cdot\mathbf{E}=0

The two transverse waves have:

\left(\chi+\left(1-n^{2}\right)\mathbf{1}\right)\cdot\mathbf{E}=0

We can take the first two equations:

\left(1+\chi_{\perp}-n^{2}\right)E_{x}+i\chi_{X}E_{y}=0
-i\chi_{X}E_{x}+\left(1+\chi_{\perp}-n^{2}\right)E_{y}=0

And combine them:

-\frac{\chi_{X}^{2}}{\left(1+\chi_{\perp}-n^{2}\right)}+\left(1+\chi_{\perp}-n^{2}\right)=0

Expanding:

-\chi_{X}^{2}+\left(1+\chi_{\perp}\right)^{2}-2n^{2}\left(1+\chi_{\perp}\right)+n^{4}=0

Which can be factored to:

\left(1+\chi_{\perp}+\chi_{X}-n^{2}\right)\left(1+\chi_{\perp}-\chi_{X}-n^{2}\right)=0

Giving dispersion relations:

1+\chi_{\perp}+\chi_{X}-n^{2}=0
1+\chi_{\perp}-\chi_{X}-n^{2}=0

The last equation is longitudinal, so:

εzz = 0

Or:

1 + χzz = 0

The term that goes to infinity at ω = ΩH is Z\left(\zeta_{1}\right). This term appears in the dispersion relation:

1+\chi_{\perp}-\chi_{X}-n^{2}=1+\sum_{s}\frac{\omega_{p}^{2}}{\omega^{2}}\frac{\omega}{k_{\|}v_{t}}Z\left(\zeta_{1}\right)-n^{2}=0

Using the dispersion relation:

n^{2}=1+\sum_{s}\frac{\omega_{p}^{2}}{\omega^{2}}\frac{\omega}{k_{\|}v_{t}}Z\left(\zeta_{1}\right)

For ω real and very close to ΩH, \zeta_{1}^{\left(e\right)}\gg1 [note: this assumption comes from Stix, we assume it is based on <i>k</i><i>v</i><i>T</i><i>i</i>˜Ω<i>H</i>. This makes sense if it is reasonable to keep the ion term as <i>Z</i>(ζ), but is not necessarily true], so we take the first term in the electron expansion:

n^{2}=1-\frac{\omega_{pe}^{2}}{\omega^{2}}\frac{\omega}{k_{\|}v_{te}}\left(\frac{k_{\|}v_{te}}{\omega-\Omega_{e}}\right)+\frac{\omega_{pi}^{2}}{\omega^{2}}\frac{\omega}{k_{\|}v_{ti}}Z\left(\zeta_{1}^{\left(i\right)}\right)

Since \omega\ll\Omega_{e}:

n^{2}=1+\frac{\omega_{pe}^{2}}{\omega\Omega_{e}}+\frac{\omega_{pi}^{2}}{\omega^{2}}\frac{\omega}{k_{\|}v_{ti}}Z\left(\zeta_{1}^{\left(i\right)}\right)

And by quasineutrality, \omega_{pe}^{2}/\Omega_{e}=-\omega_{pi}^{2}/\Omega_{i}, so we will find:

n_{\|}^{2}=1-\frac{\omega_{pi}^{2}}{\omega\Omega_{i}}+\frac{\omega_{pi}^{2}}{\omega k_{\|}v_{ti}}Z\left(\zeta_{1}^{\left(i\right)}\right)

Because n_{\|} will not go to infinity at the resonance.

This page was recovered in October 2009 from the Plasmagicians page on Generals_2005_II_4 dated 20:35, 15 May 2007.

Personal tools