2005 I 1

From QED

< PlasmaWiki | Generals(Link to this page as [[PlasmaWiki/Generals/2005 I 1]])
Jump to: navigation, search

We consider the differential equation:

\frac{d^{2}y}{dx^{2}}+\frac{1}{x^{2}}\frac{dy}{dx}+\frac{1}{x^{2}}y=0

For x \rightarrow 0, the equation is singular, so we guess y˜eS:

\left(S^{\prime\prime}+\left(S^{\prime}\right)^{2}\right)+\frac{S^{\prime}}{x^{2}}+\frac{1}{x^{2}}=0

Balance between S^{\prime}/x^{2} and (S^{\prime})^{2} gives S^{\prime}=-x^{-2}, which is dominant. There is an alternate balance between S^{\prime}=-1. Finding the next term g for the first case:

\left(\frac{2}{x^{3}}+g^{\prime\prime}-\frac{2g^{\prime}}{x^{2}}+\left(g^{\prime}\right)^{2}\right)+\frac{g^{\prime}}{x^{2}}+\frac{1}{x^{2}}=0

So balance between \frac{2}{x^{3}}, -\frac{2g^{\prime}}{x^{2}}, and \frac{g^{\prime}}{x^{2}} gives g^{\prime}=2x^{-1}. The other term is already less singular that lnx. The leading asymptotic forms are then:

y\sim x^{2}e^{1/x},\quad e^{-x}

For x\rightarrow\infty, the equation is again singular, so, guessing y˜eS:

\left(S^{\prime\prime}+\left(S^{\prime}\right)^{2}\right)+\frac{S^{\prime}}{x^{2}}+\frac{1}{x^{2}}=0

This time there is balance between S^{\prime\prime}+\left(S^{\prime}\right)^{2}+x^{-2}, giving S\sim\frac{1}{2}\left(1\pm i\sqrt{3}\right)\ln x. So:

y\sim x^{\left(1\pm i\sqrt{3}\right)/2}

Or:

y\sim x^{1/2}\sin\left(\sqrt{3}\ln x/2\right);\quad x^{1/2}\cos\left(\sqrt{3}\ln x/2\right)

Warning- The below contains a sign error!

For x\rightarrow\infty the equation is not singluar, so, writing

y = anxn − α
n
\sum_{n}a_{n}\left(n+\alpha\right)\left(n+\alpha+1\right)x^{-n-2-\alpha}-\sum_{n}a_{n}\left(n+\alpha\right)x^{-n-3-\alpha}+\sum_{n}a_{n}x^{-n-2-\alpha}=0

Shifting:

a_{n+1}\left(n+1+\alpha\right)\left(n+2+\alpha\right)-a_{n}\left(n+\alpha\right)+a_{n+1}=0

For n = 0, we want to find α s. t. the coefficient for an + 1 is zero:

\left(1+\alpha\right)\left(2+\alpha\right)+1=0

Or:

3 + 3α + α2 = 0

Which has solution:

\alpha=\frac{-3\pm\sqrt{9-12}}{2}=-\frac{3\pm i\sqrt{3}}{2}

So we must have a0 = 0, but a1 is free. That term gives the leading asymptotic form for two solutions:

y=x^{-\left(1\pm i\sqrt{3}\right)/2}

We know our solutions are real, so we can combine these solutions to be:

y=x^{-1/2}\sin\left(\sqrt{3}\ln x/2\right);\quad x^{-1/2}\cos\left(\sqrt{3}\ln x/2\right)

This page was recovered in October 2009 from the Plasmagicians page on Generals_2005_I_1 dated 20:20, 15 May 2007.

Personal tools