Parallel axis theorem

From QED

< PlasmaWiki(Link to this page as [[PlasmaWiki/Parallel axis theorem]])
Jump to: navigation, search

The parallel axis theorem states that if ICM is the moment of inertia of an object about an axis through the center of mass, then the moment of inertia about a parallel axis displaced by a distance of R is:

I = mobjectR2 + ICM

In 3 space, using cylindrical coordinates

I_{CM} = \int\int\int_{V} \rho(\mathbf{r}) [\mathbf{r}-\mathbf{r_{CM}}]^2 dr d\theta dz

and

I = \int\int\int_{V} \rho(\mathbf{r}) [\mathbf{r}-\mathbf{r_0}]^2 dr d\theta dz

I = \int\int\int_{V} \rho(\mathbf{r}) [(\mathbf{r}-\mathbf{r_{CM}})+(\mathbf{r_{CM}}-\mathbf{r_0})]^2 dr d\theta dz

I = \int\int\int_{V} \rho(\mathbf{r}) [(\mathbf{r}-\mathbf{r_{CM}})^2 + 2 (\mathbf{r}-\mathbf{r_{CM}})(\mathbf{r_{CM}}-\mathbf{r_0}) + (\mathbf{r_{CM}}-\mathbf{r_0})^2] dr d\theta dz

I = m_{object} R^2 + \int\int\int_{V} \rho(\mathbf{r}) [(\mathbf{r}-\mathbf{r_{CM}})^2 + 2 (\mathbf{r}-\mathbf{r_{CM}})(\mathbf{r_{CM}}-\mathbf{r_0})] dr d\theta dz

But since r_{CM = \int_V \rho r dr^3}

I = m_{object} R^2 + \int\int\int_{V} \rho(\mathbf{r}) [(\mathbf{r}-\mathbf{r_{CM}})^2] dr d\theta dz

I = mobjectR2 + ICM

This page was recovered in October 2009 from the Plasmagicians page on Parallel_axis_theorem dated 03:12, 16 October 2006.

Personal tools